Computer vision–based orthorectification and georeferencing of aerial image sets
نویسندگان
چکیده
Generating a georeferenced mosaic map from unmanned aerial vehicle (UAV) imagery is a challenging task. Direct and indirect georeferencing methods may fail to generate an accurate mosaic map due to the erroneous exterior orientation parameters stored in the inertial measurement unit (IMU), erroneous global positioning system (GPS) data, and difficulty in locating ground control points (GCPs) or having a sufficient number of GCPs. This paper presents a practical framework to orthorectify and georeference aerial images using the robust features-based matching method. The proposed georeferencing process is fully automatic and does not require any GCPs. It is also a near real-time process which can be used to determine whether aerial images taken by UAV cover the entire target area. We also extend this framework to use the inverse georeferencing process to update the IMU/GPS data which can be further used to calibrate the camera of the UAV, reduce IMU/GPS errors, and thus produce more accurate mosaic maps by employing any georeferencing method. Our experiments demonstrate the effectiveness of the proposed framework in producing comparable mosaic maps as commercial software Agisoft and the effectiveness of the extended framework in significantly reducing the errors in the IMU/GPS data. © 2016 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10 .1117/1.JRS.10.036027]
منابع مشابه
Visual Analytics for Multitemporal Aerial Image Georeferencing
Georeferencing of multitemporal aerial imagery is a time-consuming and challenging task that typically requires a high degree of human intervention, and which appears in application domains of critical importance, like unexploded ordnance detection. In order to make a semi-automatic scenario possible, we introduce a Visual Analytics approach for multitemporal aerial image georeferencing designe...
متن کاملOblique Aerial Photographs - an “old-new” Data Source
New imaging platforms, progress in digital cameras, the use of GNSS/IMU technology either in direct sensor orientation or in integrated sensor orientation, new thinking with regard to control information in georeferencing, and co-operation between two disciplines – photogrammetry and computer vision – have brought the possibility of using oblique aerial photographs as a data source into the lim...
متن کاملQuadrotor UAV Guidence For Ground Moving Target Tracking
The studies in aerial vehicles modeling and control have been increased rapidly recently. In this paper , a coordination of two types of heterogeneous robots , namely unmanned aerial vehicle (UAV) and unmanned ground vehicle (UGV) is considered. In this paper the UAV plays the role of a virtual leader for the UGVs. The system consists of a vision- based target detection algorithm that uses the ...
متن کاملDense Multiple Stereo Matching of Highly Overlapping Uav Imagery
UAVs are becoming standard platforms for applications aiming at photogrammetric data capture. Since these systems can be completely built-up at very reasonable prices, their use can be very cost effective. This is especially true while aiming at large scale aerial mapping of areas at limited extent. In principle, the photogrammetric evaluation of UAV-based imagery is feasible by of-theshelf com...
متن کاملCluster-Based Image Segmentation Using Fuzzy Markov Random Field
Image segmentation is an important task in image processing and computer vision which attract many researchers attention. There are a couple of information sets pixels in an image: statistical and structural information which refer to the feature value of pixel data and local correlation of pixel data, respectively. Markov random field (MRF) is a tool for modeling statistical and structural inf...
متن کامل